The Geometry of Rational Parameterized Representations
نویسنده
چکیده
We study the projective space S of rational parameter representations of degree d or less in real projective space P. The parameter representations of degree less than d form a special algebraic variety K1. We investigate the subspaces on K1 and their relation to rational curves in P, give a geometric characterization of the automorphism group of K1 and outline applications of the theory to projective kinematics.
منابع مشابه
THE RATIONAL CHARACTER TABLE OF SPECIAL LINEAR GROUPS
In this paper we will give the character table of the irreducible rational representations of G=SL (2, q) where q= , p prime, n>O, by using the character table and the Schur indices of SL(2,q).
متن کاملThe surface/surface intersection problem by means of matrix based representations
Evaluating the intersection of two rational parameterized algebraic surfaces is an important problem in solid modeling. In this paper, we make use of some generalized matrix based representations of parameterized surfaces in order to represent the intersection curve of two such surfaces as the zero set of a matrix determinant. As a consequence, we extend to a dramatically larger class of ration...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...
متن کاملREVERSE LOOP SUBDIVISION FOR GEOMETRY AND TEXTURES
Reverse subdivision aims at constructing a coarser representation of an object given by a fine polygon mesh. In this paper, we first derive a mask for reverse Loop subdivision that can be applied to both regular and extraordinary vertices. The mask is parameterized, and thus can also be used in reversing variants of Loop subdivision, such as those proposed by Warren and Litke. We apply this mas...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کامل